
Membrane Microdomains and Cytoskeleton Organization
Shape and Regulate the IL-7 Receptor Signalosome in Human
CD4 T-cells*□S

Received for publication, January 2, 2013 Published, JBC Papers in Press, January 17, 2013, DOI 10.1074/jbc.M113.449918

Blanche Tamarit‡§1, Florence Bugault‡, Anne-Hélène Pillet‡§1,2, Vincent Lavergne‡3, Pascal Bochet‡¶,
Nathalie Garin�, Ulf Schwarz**, Jacques Thèze‡, and Thierry Rose‡4

From the ‡Institut Pasteur, Département Infection et Epidémiologie, Département d’Immunologie, Unité d’Immunogénétique
Cellulaire, 25 Rue du Dr. Roux, 75724 Paris Cedex 15, France, §Université Pierre et Marie Curie, Cellule Pasteur-UPMC, 25 Rue du Dr.
Roux, 75015 Paris, France, ¶CNRS UMR3525, 25 Rue du Dr. Roux, 75015 Paris, France, �Leica Microsystems AG, Max Schmidheiny
Strasse 201, CH-9435 Heerbrugg, Switzerland, and **Leica Microsystems CMS GmbH, Am Friedrichplatz,
D-68165 Mannheim, Germany

Background: Interleukin-7 is the master regulator of T-cell proliferation.
Results: IL-7 drives its receptor in amembranemicrodomain that regulates phosphorylation of associated tyrosine kinases JAK1
and JAK3, anchors IL-7 receptor to cytoskeleton and regulates STAT5 phosphorylation and nuclear translocation.
Conclusion:Membrane microdomains and cytoskeleton scaffold IL-7R-signalosomes and assist signaling protein transport.
Significance: Transient membrane and cytoskeleton organization shapes IL-7-signaling mechanisms in CD4 T-cells.

Interleukin (IL)-7 is the main homeostatic regulator of CD4
T-lymphocytes (helper) at both central and peripheral levels.
Upon activation by IL-7, several signaling pathways, mainly
JAK/STAT, PI3K/Akt and MAPK, induce the expression of
genes involved in T-cell differentiation, activation, and prolifer-
ation. We have analyzed the early events of CD4 T-cell activa-
tion by IL-7. We have shown that IL-7 in the first few min
induces the formation of cholesterol-enriched membrane
microdomains that compartmentalize its activated receptor and
initiate its anchoring to the cytoskeleton, supporting the forma-
tion of the signaling complex, the signalosome, on the IL-7
receptor cytoplasmic domains. Here we describe by stimulated
emission depletion microscopy the key roles played by mem-
branemicrodomains and cytoskeleton transient organization in
the IL-7-regulated JAK/STAT signaling pathway. We image
phospho-STAT5 and cytoskeleton components along IL-7 acti-
vation kinetics using appropriate inhibitors.We show that lipid
raft inhibitors delay and reduce IL-7-induced JAK1 and JAK3
phosphorylation.Drug-induceddisassembly of the cytoskeleton
inhibits phospho-STAT5 formation, transport, and transloca-
tion into the nucleus that controls the transcription of genes
involved in T-cell activation and proliferation. We fit together
the results of these quantitative analyses andpropose the follow-
ing mechanism. Activated IL-7 receptors embedded in mem-
brane microdomains induce actin-microfilament meshwork
formation, anchoring microtubules that grow radially from

rafted receptors to the nuclear membrane. STAT5 phosphory-
lated by signalosomes are loaded on kinesins and glide along the
microtubules across the cytoplasm to reach the nucleus 2 min
after IL-7 stimulation. Radial microtubules disappear 15 min
later, while transversal microtubules, independent of phospho-
STAT5 transport, begin to bud from the microtubule organiza-
tion center.

IL-7 is a crucial cytokine in the immune system (1, 2) in that
it induces the production of CD4 T-lymphocytes from precur-
sor cells in the thymus, regulates their proliferation, and con-
tributes to the homeostasis ofmature CD4T-cells in peripheral
blood. IL-7 is secreted by stromal cells in red marrow, thymus,
keratinocytes, dendritic cells, and endothelial cells (3). It binds
to a heterodimeric receptor, IL-7R,made up of two glycosylated
subunits: IL-7R� (CD127, 65 kDa) (4), specific to IL-7 and thy-
mic stromal lymphopoietin (5), and the common � chain (�c,
CD132, 56 kDa) shared by IL-2, 4, 7, 9, 15 and 21 receptors (2).
These two chains have common ancestors and share the same
topology; both chains are embedded in the membrane by a sin-
gle-pass transmembrane helix that connects the immunoglobin
fold structured ectodomain to the unstructured cytoplasmic
domain (6).
IL-7R� is expressed at the surface of quiescent cells and grad-

ually disappears within 12 h of activation by IL-7 (7–9). Con-
versely, �c is weakly expressed at the surface of quiescent CD4
T-cells, but activation by IL-7 rapidly up-regulates its expres-
sion, which peaks after 12 h and lasts for as long as 48 h. The
heterodimer is formed prior to IL-7 binding (10). IL-7 has high
affinity for the IL-7R heterodimer (Kd �35�10�12 M) and shifts
the equilibrium of receptor assembly. By contrast, IL-7 has low
affinity for its single proprietary chain, IL-7R� (Kd �3�10�9 M)
and poor affinity for�c (Kd�250�10�9 M) (11). The cytoplasmic
domain of IL-7R� is long (195 residues), whereas that of �c is
shorter (86 residues). Both domains are responsible for binding
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a large array of proteins involved in signaling pathways that
support cell survival and proliferation (2). These proteins
include Janus kinases, JAK1 and JAK3 (bound by IL-7R� and
�c, respectively), that are involved in the JAK/STAT pathway.
JAK1 and JAK3 recover their Tyr kinase activity when tethered
in close contact by the IL-7-activated receptor. They phosphory-
late themselves and then the IL-7R� carboxyl-terminal Tyr
(Tyr(P)-456). This Tyr(P)-456 provides a single binding site for
STAT1, STAT3, and mainly STAT5a and STAT5b. Bound
STATs are then phosphorylated by the activated pJAK1�pJAK35
complex (12). After phosphorylation, the STATs dissociate,
dimerize, and are translocated into thenucleus,where they induce
transcription of gene clusters involved in cell programs (12).
MAPKs and PI3K/Akt (signaling serine/threonine kinase) path-
ways are also triggeredby IL-7�IL-7Rbinding andgive rise tomito-
genic and anti-apoptotic signals (1, 2). Although awealth of infor-
mation is available on the various kinases involved in IL-7 signal
transduction, less is known about the formation of the signaling
complex and its molecular mechanism.
We have previously shown that IL-7 binds to its preassoci-

ated receptor and then induces migration of the complex into
membrane microdomains, as observed by flotation ultracen-
trifugation through a sucrose gradient and by diffusion mea-
surements in living cells using fluorescence autocorrelated
spectroscopy (FCS) (10). These embedded complexes are then
confined by the cytoskeleton, as suggested by slowed receptor
diffusion measured by FCS, and are released by cytoskeleton
disassembly drugs (10). We used mass spectrometry (MS) to
analyze the content of the protein complex immunoprecipated
with IL-7R� after IL-7-activation andCD4T-cell lysis in Triton
X-100 buffer (10). We found that activated IL-7R is associated
with many proteins known to be present in cytoskeleton and
membranemicrodomains andwith proteins involved in several
signaling pathways (10).
In the study reported here, we used superresolution optical

microscopy by stimulated emission depletion (13–15) to
observe structures smaller than the theoretical diffraction limit.
We showed for the first time how IL-7 in human primary CD4
T-lymphocytes induces the rapid formation of 1) membrane
microdomains, 2) dual actin-cortex organization, and 3) tran-
sient radial microtubules that bridge plasma and nuclear mem-
branes. We demonstrated that IL-7�IL-7R compartmentaliza-
tion in membrane microdomains regulates JAK phosphorylation
and that confinement by the cytoskeleton upon IL-7 binding con-
trols STATphosphorylation, transport, and translocation into the
nucleus. We also herein provide a step-by-step description of the
IL-7-induced JAK/STAT signaling pathway that is central to CD4
T-cell activation and proliferation.

MATERIALS AND METHODS

Purification of Human CD4 T-lymphocytes—Venous blood
was obtained from healthy volunteers through the Etablisse-

ment Français du Sang (Centre Necker-Cabanel, Paris). CD4
T-cells were purified from peripheral bloodmononuclear cells,
checked for homogeneity and activation state, and cultured in
microplates, as described previously (10) and detailed in the
supplemental material. Cells were activated with 2 nM recom-
binant glycosylated human IL-7 (Cytheris) at 37 °C in a temper-
ature-controlled water bath and a 5% CO2 humidified
atmosphere.
Confocal and STED Microscopy—Images were acquired

above the diffraction limit on an inverted laser-scanning con-
focalmicroscope (LSM700, Zeiss) as detailed in the supplemen-
tal material. Images were acquired below the diffraction limit
on two DM16000CS/SP5 inverted laser-scanning confocal
microscopes using either continuous wave excitation STED
(CW-STED; Leica) (14) or pulsed excitation STED (STED;
Leica) (13).
Cell preparation and labeling of specific proteins is described

in detail in the supplemental material. Briefly, cells were puri-
fied, equilibrated in RPMI for 2 h at 37 °C, and then loaded on
polylysine-coated coverglasses for 20 min at 37 °C. When
needed, immobilized cells were treatedwith either cytochalasin
D (CytD; Sigma), colchicin (Col; Sigma), or cholesterol oxidase
(COase; Sigma) for 30min or sphingomyelinase (SMase; Sigma)
for 5 min at 37 °C and then activated with 2 nM IL-7. Cells were
fixed from 1 to 60 min after the addition of IL-7 with 1.5%
paraformaldehyde (PFA; Sigma) for 15 min at 37 °C and then
permeabilizedwhennecessary for 20min in ice-cold 90%meth-
anol/water solution when required for cytoplasmic labeling.
Cells were then rehydrated for 15 min in PBS plus 5% fetal
bovine serum (FBS) and then labeled. For pSTAT5 kinetics,
cells were pretreated with acidic buffer and washed twice in
PBS/FBS before fixation (10). GM1 gangliosides were labeled
with AlexaFluor-coupled cholera toxin subunit B (CtxB-Alexa-
Fluor488 or CtxB-AlexaFluor647; Invitrogen) on non-permea-
bilized cells that were either fixed with PFA or not. The other
proteins were targeted with corresponding primary antibodies.
The secondary antibodies used for pulsed STED microscopy
consisted of anti-mouse IgG-Chromeo494, anti-rabbit IgG-
Chromeo494, and anti-rabbit IgG-Atto647 (Active Motif).
Anti-mouse IgG-AlexaFluor488 (Invitrogen) and anti-rabbit IgG-
AlexaFluor488 (Invitrogen)wereused forCW-STEDandconfocal
microscopy. Anti-mouse IgG-AlexaFluor633 was used for confo-
cal microscopy. Cells were mounted in Vectashield/DAPI
medium (Vector Laboratories) for confocal microscopy and in
Mowiol (4-88; Sigma) supplemented with antifading Dabco (35
mg/ml; Sigma) for STEDmicroscopy.
Receptor Chain Diffusion Rate Analysis by Fluorescence

Cross-correlated Spectroscopy—All protein diffusions at the
surface of living human CD4 T-cells were acquired and ana-
lyzed in the absence and presence of raft and cytoskeleton
inhibitors by spot variation FCS (16) using an inverted laser-
scanning confocalmicroscope (LSM510, Zeiss), combinedwith
a ConfoCor2 FCS system (Zeiss), as described previously (10),
and detailed in the supplemental material.
Protein Assays by Flow Cytometry—Procedures are detailed

in the supplemental material. Briefly, CD4 T-cells were treated
with drugs, activated with IL-7, and then fixed with PFA. GM1
was assayed at the surface of non-permeabilized cells using

5 The abbreviations used are: pJAK, phosphorylated JAK; pSTAT, phosphory-
lated STAT; FCS, fluorescence autocorrelated spectroscopy; GM1, mono-
sialotetrahexosyl ganglioside; MTOC, microtubule organization center;
STED, stimulated emission depletion; CW-STED, continuous wave excita-
tion STED; CytD, cytochalasin D; Col, colchicin; COase, cholesterol oxidase;
sphingomyelinase; PFA, paraformaldehyde; CtxB, cholera toxin subunit B.
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CtxB-AF488. pSTAT5was assayed in permeabilized cells using
ice-cold 90%methanol/water, as described previously (10). The
kinetics of IL-7-induced actin and tubulin polymerization were
determined by cytometry. Activation in 96-well plates was
stopped by centrifugation (350 � g) for 1 min at 4 °C. CD4
T-cells were labeled at the cell surface (anti-CD4-ECD) in 1%
FBS for 30 min at 4 °C. Cells were washed in cold PBS, centri-
fuged, and then permeabilized by 0.5% Triton X-100 for 10
min on ice. PFA was added (1.5% final), and the cells were cen-
trifuged for 5 min. They were then washed in cold PBS and
incubated for 30 min in PBS containing 5% FBS at 4 °C with
anti-actin-AF647 (sc1616, Santa Cruz Biotechnology, Inc.) and
anti-tubulin-AF488 (sc5286, Santa Cruz Biotechnology, Inc.).
Cells were washed in cold PBS and analyzed on a Cyan LXTM

cytometer (DakoCytomation) using FlowJo version 8.3.3 data
analysis software (Tree Star).
Western Blot Analysis—Immunoprecipitations were per-

formed from centrifuged lysates after treatment of purified
CD4 T-cells with Triton X-100 buffer using the indicated pri-
mary antibodies and immobilized protein G on Sepharose-4G
(GE Healthcare), and immunoprecipitated protein samples
were analyzed by Western blotting as described in the supple-
mental material.

RESULTS

STED Microscopy Analysis of IL-7-induced Membrane
Microdomains at the Surface of Human CD4 T-lymphocytes—
Human CD4 T-cells were isolated from the blood of several
healthy donors. Cells were re-equilibrated in culture
medium at 37 °C and 5% CO2 for 2 h and then activated by 2
nM IL-7 for 10 min. Membrane microdomains were labeled
through ganglioside (GM1) with cholera toxin B (CtxB)
tagged with AlexaFluor488. Z-stacks of images were
acquired by superresolution optical microscopy processing
CW-STED. Flattened three-dimensional reconstructions of
the half-cell tops are shown in Fig. 1, a–c, and corresponding
images at full resolution are shown in supplemental Fig. S1.
IL-7-activated CD4 T-lymphocytes showed several hundred
dense, circular spots. These spots were sparsely scattered over
the surface of quiescent cells. The number and size of these
GM1-enriched membrane microdomains were averaged over
100 CD4 T-cells (Fig. 1, d and e): 307 � 50 spots/cell of 90-nm
diameter in IL-7-activated cells, 12 � 6 spots/cell of 170-nm
diameter in quiescent cells. IL-7-induced spots were observed
over the entire surface of the cells. Spot distribution density was
sometimes asymmetrical, but no clustering was observed. The
formation of these microdomains started about 1 min after
adding IL-7. Half the spots were formed after 5 min, and the
maximum was reached after 15 min (Fig. 1f). The number of
spots then slowly decreased, whereas spot diameter increased
(Fig. 1g). No such spots were observed on IL-7-activated CD4
T-cells after 30 min of treatment with COase and 5 min of
treatment with SMase, as shown in Fig. 1c. These spots, or
membranemicrodomains, are large lipid rafts, enriched in cho-
lesterol, sphingomyelin, and GM1. GM1 distribution changed
upon IL-7 activation, but the overall number of GM1 at the
surface of T-cells was only slightly affected over the first 15min

of activation, as shown by flow cytometry analysis of GM1
labeled with CtxB-AF488 (supplemental Fig. S2).
Membrane Domain Disassembly Inhibits JAK Phosphorylation—

Inorder to investigate the roleplayedbymembrane compartmental-
ization in the IL-7-induced phosphorylation of JAKs and STATs, we
analyzed the kinetics of IL-7-induced JAK1, JAK3, andSTAT5phos-
phorylation before and after treatment with optimal concentrations
of lipid raft inhibitors (COase and SMase). Cytoplasmic concentra-
tions of pJAK1 (Tyr(P)-1034/Tyr(P)-1035), pJAK3 (Tyr(P)-980/
Tyr(P)-981), andpSTAT5 (Tyr(P)-694)were comparedby averaging
densitometric analysesofECLbands fromfiveWesternblots (Fig. 2).
Intheabsenceofanyinhibitors,pJAK1andpJAK3startedtoaccumu-
late1minafterIL-7activation,reached50%ofthemaximumconcen-
trationafter5min,peakedafter15min,anddecreasedthereafter (Fig.
2, a, c, and d). In the presence of COase and SMase, JAK1 and JAK3
were phosphorylated 10 timesmore slowly after the addition of IL-7,
peaked 60 min later at only 25% of the optimal concentration
observed in the absence of raft inhibitors, and then decreased after-

FIGURE 1. Membrane microdomain formation induced by IL-7 at the
CD4� T-cell surface, resolved by STED microscopy. The binding of CtxB-
AF488 on the GM1-enriched region was imaged by CW-STED microscopy
after 5 min of activation by IL-7 (b) at the surface of nonstimulated (NS) lym-
phocytes (a) or COase- and SMase-treated cells (c). Sliced images of the half-
cell top at the opposite side of the coverglass were flattened. Image colors
were inverted and converted to grayscale. Original images are shown in sup-
plemental Fig. S1. Total GM1 binding per cell was assayed by cytometry and
plotted in supplemental Fig. S2. The number of GM1-enriched membrane
microdomains was averaged from 100 CD4� T-cells (d) from slides shown in a
and b. The size of membrane microdomains was averaged from 100 cells from
the same slides; the measurement of CtxB-AF488 fluorescence intensity in
one membrane microdomain is shown for nonstimulated (dashed line) and
IL-7-stimulated cells (continuous line) (e). Membrane microdomain number (f)
and size (g) are plotted versus time after IL-7 activation. Error bars, S.E.
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ward (Fig. 2,b, c, andd). Lipid raft inhibitors affected both JAKphos-
phorylation efficiency and kinetics. In untreated cells, pSTAT5
reached50%oftheplateauconcentrationinthecytoplasm7minafter
activation and reached theplateau concentration after 15min (Fig. 2,
a and e). In the presence of raft inhibitors, only 17% of the pSTAT5
plateauwas reached (Fig. 2,b and e).Aquantitative analysis of overall
intracellularpSTAT5concentrationsbyflowcytometrycorroborated
the effects of the combined inhibitors and their kinetics and showed
thatCOase has a greater inhibitory effect than SMase (Fig. 2f).
IL-7 Induces Transient Cytoskeleton Structuring—Investiga-

tions by pulsed STED microscopy showed that IL-7 induces a
two-step structural organization of cytoskeleton in CD4T-cells
(Fig. 3). Early structuring occurred 1 min after IL-7 was added.

We noted, in quiescent cells, that actin was mainly concen-
trated in the vicinity of the plasma membrane and was diffuse
elsewhere in the cytoplasm (Fig. 3, a and d). Tubulin was dif-
fused throughout the cytoplasm (Fig. 3, a and f). After IL-7
activation, actin formed two dense layers: the first beneath the
plasma membrane and the second surrounding the nuclear
membrane (Fig. 3, b and e). Strikingly, tubulin was seen to form
rods organized radially through the cytoplasm (250–1000 nm
in length) and bridging plasma and nuclear membranes (Fig. 3,
b and g). These rods showed labeling patterns consistent with
microtubules, the two ends of which were deeply anchored in
both actin cortexes. Actin layers appear denser at the junction
point with tubulin rod patterns. We counted 5–25 tubulin rod
patterns per 500-nm thickness of cell slice image (23 threads in
Fig. 3b, six of which are shown in the enlarged boxed area in Fig.
3g). No such threads were observed in non-activated control
cells (Fig. 3f). These radial microtubules disappeared 15 min
after the addition of IL-7 and had an individual life span of
about 5–10 min. In the largest space in the cytoplasm, nascent
microtubules budded from the microtubule organization cen-
ter (MTOC) 10 min after the addition of IL-7. Whereas the
radial microtubules disappeared, transversal microtubules
grew from theMTOC in a star pattern (Fig. 3c) to surround the
nucleus after 45min, as detailed by pulsed STEDmicroscopy in
Fig. 3h and supplemental Fig. S3 (full resolution). Fig. 3h shows
nine microtubule bundles radiating from the MTOC and the
separation of each into single fibers. The boxed region in Fig. 3h
is enlarged in Fig. 3j, which shows microtubule details. These
long transversal microtubules in Fig. 3j were comparable in
section diameter and staining irregularity with the short radial
microtubules shown in Fig. 3g. These structureswere very fuzzy
in conventional microscopy (Fig. 3, i and k). Logically, IL-7
failed to induce any cytoskeleton structural organization 30
min after the cells had been treated with drugs that inhibit
microfilament assembly (CytD) or microtubule assembly (Col)
and showed fuzzy actin and tubulin distribution as seen in non-
stimulated cells.
The kinetics of IL-7-induced actin and tubulin polymeriza-

tion were determined by cytometry. Cells were permeabilized
with Triton X-100 and then fixed with PFA. Actin and tubulin
were labeled with anti-actin-AF647 and anti-tubulin-AF488
(Fig. 3l). IL-7 increased the levels of actin and tubulin detected
in the first 10 min; actin polymerization in microfilaments and
tubulin assembly in microtubules were seen to stabilize these
structures in the Triton-permeabilized cells. The decrease in
tubulin after 15minmay be interpreted as due to disassembly of
the IL-7-induced radial microtubules preceding the formation
of transversal microtubules from the MTOC. Investigations
after treatment with CytD and then IL-7 activation (5 min)
confirmed that microtubule formation is dependent on micro-
filament organization (Fig. 3m). Observations by STEDmicros-
copy of cells treated with Col confirmed that microfilament
organization beneath the plasma membrane is independent of
microtubule formation, but the perinuclear actin cortex
depends on the presence of microtubules.
Actin Cortex Anchors Activated IL-7 Receptors—We have

previously measured by FCS the diffusion rate Deff of IL-7R�
(0.21 �m2/s) and shown by fluorescence cross-correlated spec-

FIGURE 2. Disassembly of membrane microdomains inhibits JAK1 and
JAK3 phosphorylation kinetics. JAK1, JAK3, and STAT5 phosphorylation
was measured by Western blotting during IL-7 activation of CD4 T-cells in the
absence (a) or in the presence (b) of raft inhibitors (1 unit/ml, i.e., 31 �M COase
and 0.1 unit/ml, i.e., 2.7 �M SMase). The kinetics of pJAK1 (c), pJAK3 (d), and
pSTAT5 (e) accumulation in the presence or absence of combined lipid raft
inhibitors were plotted from band density (sum of pixel intensities in a rectan-
gle boxing the band divided by the corresponding band of the unphospho-
rylated species and corrected for the offset at time 0). Maximum density was
set to 100%, and minimum density was set to 0 for a treated/untreated blot
pair. Percentage values were averaged from five blot pairs (five independent
CD4 T-cell donors). Error bars, S.E. The results of intracellular pSTAT5 assays by
FACS were plotted against inhibitor concentration 15 min after IL-7 activa-
tion, without and with lipid raft inhibitors, separately (COase, SMase) or in
unit/unit combination (COase � SMase) (f).
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troscopy that the addition of IL-7 slows the diffusion of its pre-
assembled receptor IL-7R���c from 0.17 down to 0.02 �m2/s
(10).We have also demonstrated that receptor slowing is a con-
sequence of its IL-7-induced recruitment by the cytoskeleton.
We detail here the respective roles of microfilaments and
microtubules. The diffusion rate and confinement time of the
labeled complex were measured by spot variation FCS (16, 17)
in live CD4 T-cells. Diffusion rate is inversely proportional to
the slope of the diffusion time versus spot area (�0

2) plot. Con-
finement time �0 was extrapolated in the same plot as the y
intercept. Diffusion plots of the IL-7R��mAb-AF488�IL-
7biotin�SAF633 complex are given herein (Fig. 4a), along with
bar graphs comparing diffusion rates and confinement times
(Fig. 4b) for increasing doses of CytD. Details of thesemeasure-
ments are given in supplemental Fig. S4. The dose-response
obtained with CytD illustrates receptor release for diffusion
when actin filaments are depolymerized. The diffusion rate of
activated receptors was maximal from 20 �MCytD (Deff � 0.23
�m2/s) (Fig. 4b). Microtubule depolymerization by Col did not
release any activated receptors, and Col did not increase the
effect of CytD on receptor diffusion (Fig. 4b). Lipid raft inhibi-
tors (COase, SMase, or COase� SMase) failed to release recep-
tors confined in actin-scaffold structures (Fig. 4b), but in the
presence of CytD, treatment with COase � SMase did increase
the diffusion rate of cytokine-bound receptors (Deff � 0.35
�m2/s); they diffused even more rapidly than cytokine-free
receptor (Deff � 0.17 �m2/s) and IL-7R� single chain (Deff �
0.21 �m2/s) on untreated cells, and confinement time was zero
(i.e. characteristic of free two-dimensional diffusion out of
membrane microdomains). The activated receptors diffused
freely as the cytoskeleton meshing the membrane inlet vicinity
was disassembled. We noted that although actin microfila-
ments anchored IL-7-activated receptors even in the absence of
microtubules and membrane microdomains, the anchoring
kinetics under these conditions were altered.
Cytoskeleton Disassembly Inhibits STAT Phosphorylation—

The involvementof IL-7-inducedcytoskeletonorganization in the
JAK/STATpathwaywas assessed by comparing the effect of cyto-
skeleton inhibitors on the IL-7-induced phosphorylation of JAK1,
JAK3, and STAT5 (Fig. 5). We determined the kinetics of pJAK1
(Tyr(P)-1034/Tyr(P)-1035), pJAK3 (Tyr(P)-980/Tyr(P)-981), and
pSTAT5 (Tyr(P)-694) accumulation in the cytoplasm byWestern
blotting after treatment with CytD (20 �M) and Col (10 �M) (Fig.
5b) and compared the results with pJAK and pSTAT5 concentra-
tions in the absenceof these cytoskeleton inhibitors (Fig. 5a). Band
densities were averaged from five Western blot pairs processed
from the cells of five healthy blood donors. Cytoskeleton assembly
inhibitors had only weak effects on the kinetics of JAK1 and JAK3
phosphorylation (Fig. 5, c and d). Conversely, STAT5 phosphory-
lation was substantially delayed and reduced (Fig. 5e). When
T-cells were pretreated with CytD and Col, STAT5 phosphoryla-
tionwaseight times slower andpeaked45minafter theadditionof

FIGURE 3. IL-7 induces cytoskeleton structuring observed by STED
microscopy. Microfilament and microtubule organization was compared by
pulsed-STED microscopy before (a), 5 min (b), and 45 min (c) after IL-7 activa-
tion of human primary CD4 T-cells. Tubulin from microtubules was labeled
with mouse anti-tubulin and anti-mouse-chromeo494 (green), and actin from
microfilaments was labeled with rabbit anti-actin and anti-rabbit Atto647
(red). Details of actin organization are shown in d and e, and details of tubulin
organization are shown in f and g from the boxed area in nonstimulated and
IL-7-activated cell images (a and b, respectively). Image colors were inverted
and converted into grayscale. Original full resolution images are shown in
supplemental Fig. S3). Radial microtubules passing through the cytoplasm 5
min after IL-7 activation are indicated by arrows and contrast with the cyto-
plasm of unactivated cells. Images show tubulin organization in cells 45 min
after activation, by STED (h) and regular confocal microscopy (i) with the
boxed area enlarged in corresponding panels (j and k). Kinetics of IL-7-induced
actin and tubulin polymerization, by cytometry, are plotted in l with mean

fluorescence intensity (MFI) versus time (min) with bars indicating S.E. from
five independent experiments (five donors). Cells were permeabilized by
0.5% Triton X-100 and then fixed by 1.5% PFA. Actin and tubulin were labeled
with anti-actin-AF647 and anti-tubulin-AF488. Mean fluorescence intensity
assays by cytometry were then performed with the same labeling after Col
and CytD treatments (30 min) and then IL-7 activation for 5 min (m).

Microdomains and Cytoskeleton Regulate IL-7 Response

MARCH 22, 2013 • VOLUME 288 • NUMBER 12 JOURNAL OF BIOLOGICAL CHEMISTRY 8695



IL-7atonly28%of theoptimalpSTAT5concentrationobserved in
the absence of drugs and thendecreased afterward (Fig. 5e). These
observations were confirmed in intracellular pSTAT5 assays by
flow cytometry summing cytoplasmic and nuclear concentrations
(Fig. 5f). Col, CytD, andCol�CytDwere seen to cause a dose-de-
pendent alteration in pSTAT5 concentrations measured by flow
cytometry, which fell to aminimum fromCol�1�M and showed

a slow slope drift with CytD �2 �M (Fig. 5g). CytD had a more
marked effect than Col on pSTAT5 plateau concentrations. Col
accentuated the inhibitory effect of CytD when used in
combination.
Cytoskeleton Disassembly Alters STAT Transport Kinetics

and Translocation—Because IL-7 was observed to induce rapid
and marked cytoskeleton reorganization, we investigated the
effects of CytD and Col on pSTAT5 transport across the cyto-

FIGURE 4. Actin microfilament meshwork anchors activated IL-7 recep-
tors, and receptor embedding in membrane microdomains is indepen-
dent of this anchoring. Two-dimensional diffusion of IL-7R� labeled by
AF488-coupled monoclonal antibody anti-IL-7R� was measured at the sur-
face of living CD4 T-cells by FCS and fluorescence cross-correlated spectros-
copy. Diffusion times �D (in 10�3 s) in the presence of IL-7biotin�SAF633 are
plotted versus the surface area �2 intercepted by the confocal volume (in 103

nm2): autocorrelation function (ACF) of IL-7R��mAb-AF488 in the absence of
IL-7 (E; NS) and crosscorrelation function (CCF) of IL-7R��mAb-AF488 with
IL-7biotin�SA633 without CytD (●) in the presence of increasing concentra-
tions of CytD (�). Diffusion plots (fluorescent particle diffusion time versus
surface area intercepted by the variable confocal volume) are shown in a. All
cross-correlation curves are detailed in supplemental Fig. S4. Slopes of the
linear regression give effective diffusion rates Deff, and y intercepts extrapo-
late confinement time �0, as described previously (16, 17). b, Deff (top) and �0
(bottom) are shown in the bar graph for IL-7R�Ab-AF488 in the absence of IL-7
(NS), in the presence of IL-7biotin�SA633 without inhibitor (�0), and then with
different pretreatments using the following inhibitors: CytD (from 1 to 100
�M), Col (10 �M), CytD (20 �M) � Col (10 �M), COase (1 unit/ml, i.e., 31 �M),
SMase (0.1 unit/ml, i.e., 2.7 �M), and COase � SMase. All, COase � SMase �
CytD � Col. Error bars, S.E. from five independent experiments.

FIGURE 5. Cytoskeleton disassembly inhibits STAT5 phosphorylation.
JAK1 and STAT5 phosphorylation kinetics were analyzed by Western blotting
during IL-7 activation of CD4 T-cells in the absence (a) or in the presence of
cytoskeleton inhibitors (20 �M CytD and 10 �M Col) (b). Maximum density was
set to 100% and minimum to 0 for a treated/untreated blot pair. Percentage
values were averaged from five blot pairs (five independent CD4 T-cell
donors) (c and d). Bars, S.E. Band densities were computed from the sum of
pixel intensities in a rectangle boxing the band divided by the corresponding
band of the unphosphorylated species and corrected for the offset at time 0.
Mean fluorescence intensity (MFI) of intracellular pSTAT5 staining measured
by FACS were also averaged from five independent CD4 T-cell donors and
was plotted versus time (e). The dose-dependent inhibition of the phosphoryl-
ation response to IL-7 activation was measured by FACS (f).
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plasm and translocation into the nucleus because this signaling
intermediate is phosphorylated below the plasma membrane
and is known to promote the transcription of many nuclear
genes in synergy with other factors. We used pulsed STED
microscopy to compare pSTAT5 distribution kinetics in IL-7-
induced CD4 T-cells in the absence or in the presence of cyto-
skeleton inhibitors before activation (Fig. 6). In the absence of

inhibitors, pSTAT5 appeared in the cytoplasm, below the
plasma membrane, 1 min after the addition of IL-7 (Fig. 6a),
peaked from 5 to 10 min, decreased afterward (Fig. 6d), and
disappeared after 45min (Fig. 6e). pSTAT5was observed in the
nucleus from the second minute. It accumulated there (Fig. 6,
b–e), reached 50% of its maximum after 5–10 min, reached the
maximum after 15–30 min, and decreased thereafter (Fig. 6g).
STEDmicroscopy showed that some pSTAT5 colocalized with
microtubules; these pSTAT5 appeared as threads across the
cytoplasm, as shown 5 min after the addition of IL-7 in the
enlarged image in Fig. 6c.

Pretreating cells for 30 min with CytD � Col significantly
altered the quantity of pSTAT5 in the cell, and 45 min after the
IL-7 was added, most of the pSTAT5 was found in the inflated
cytoplasm (Fig. 6f) instead of in the nucleus, as observed in the
absence of inhibitors (Fig. 6e). Given that microtubules are
clearly involved in the transport and translocation of pSTAT5
into the nucleus, we investigated the interaction between
pSTAT5 and tubulin and two of the major molecular motor
families that glide along microtubules: kinesins and dyneins
(18). To do this, we activated CD4T-cells with IL-7 (2 nM) for 1,
2, 3, 5, 10, 20, and 45min and then harvested, washed, and lysed
the cells in 0.5%Triton buffer.We immunoprecipitated protein
complexes from centrifugation supernatants with anti-tubulin
�, anti-UKHC (targeting the universal heavy chain common to
all kinesin complexes), or anti-dynein intermediate chain and
viewed Western blots after treatment with anti-pSTAT5 (Fig.
6i) or STAT5 (Fig. 6j). When the cytoplasmic membrane was
lysed using ice-cold 0.5% Triton, pSTAT5was immunoprecipi-
tated with tubulin and UKHC in the first 5 min after IL-7 acti-
vation but was not detectable thereafter. When both the cyto-
plasmic and nuclear membranes were thoroughly lysed using
1% Triton buffer and cell freezing and thawing cycles, pSTAT5
and STAT5 were detectable for up to 20 and 45 min, respec-
tively, after IL-7 activation when immunoprecipitated with
tubulin (Fig. 6k). This observation suggests that the microtu-
buleswere carried awaywith the cell lysate centrifugation pellet
under mild lysis conditions when microtubules anchor to the
nucleus more than 2 min after IL-7 activation. Microtubules
were released from nuclear membrane anchorage under stron-
ger lysis conditions. This further suggests that microtubules
grow from the membrane through the nucleus. The time shift
observed in Fig. 6k between the pSTAT5 and STAT5 amounts
immunoprecipitated with tubulin suggests that both phosphory-
lated and unphosphorylated STAT5 are carried along microtu-
bules. Despite the presence of dynein in the cytoplasm (Fig. 6j,
lane C), no STAT5 was coimmunoprecipitated with the dynein
intermediate chain. These results seem to disqualify dynein
fromany involvement in pSTAT5 and STAT5 transport inCD4
T-cells and spotlight kinesins as molecular motor candidates
for both the anterograde and retrograde transport of pSTAT5
and STAT5, respectively.

DISCUSSION

IL-7 induces a variety of responses in CD4 T-lymphocytes,
primarily through the main common �c-signaling pathways
JAK/STAT, Akt/PI3K, and MAPK (2). These pathways have
been described as reaction cascades and are processed within

FIGURE 6. Kinetics of kinesin-assisted pSTAT5 transport and transloca-
tion into the nucleus observed by STED microscopy after IL-7 activation.
pSTAT5 was labeled with a specific primary mAb and then a secondary anti-
rabbit antibody, Atto647, on PFA-fixed cells 1, 3, 5, 15, and 45 min after the
addition of IL-7 and imaged on a pulsed STED microscope (a– e). Details of
pSTAT threads are boxed from the 5 min image (c). f, image obtained 45 min
after the addition of IL-7 in a cell pretreated with CytD � Col. Pixel intensity
sum for the nucleus and cytoplasm areas (ROI, region of interest) was aver-
aged for five cells and plotted against IL-7 activation time in the absence (g) or
in the presence of cytoskeleton inhibitors (h). pSTAT5 (90 kDa) was analyzed
by Western blotting after immunoprecipitation with anti-tubulin, anti-UKHC,
and anti-dynein from 1 to 20 min after IL-7 activation (i). Tubulin (54 kDa),
UKHC (120 kDa), and dynein (75 kDa) immunoprecipitations (IP) with anti-
STAT5 were analyzed against activation time (j); lane C shows the unprecipi-
tated lysate control. pSTAT5 and STAT5 are labeled from proteins immuno-
precipitated by anti-tubulin from cells thoroughly lysed by 1% Triton X-100
buffer and then frozen and thawed twice and assayed from 1 to 45 min in the
absence or presence of cytoskeleton inhibitors separately (CytD and Col) or in
unit/unit combination (CytD � Col) (k). Error bars, S.E.
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the signaling complex, the signalosome, which is associated
with the cytoplasmic domains of the IL-7 receptor rather than
being free in the cytoplasm. This clustering of protein kinases
with signaling intermediates optimizes substrate diffusion and
presentation from one enzyme to another and organizes gradi-
ents of signaling intermediates (19). Themolecular assembly of
the reaction complexes that form the IL-7R signaling complex,
or signalosome, needs to be further documented. Consistent
with this, we have previously shown, by time-resolved micro-
imaging and single molecule analyses, that IL-7 binds to its
preassembled dimeric receptor then induces its compartmen-
talization in membrane microdomains and its interaction with
the cytoskeleton meshwork (10). We have also demonstrated,

by a proteomics approach, that IL-7R activation initiates the
formation of signaling complexes involving signaling pathway
proteins but also many components of the cytoskeleton and a
number of proteins associated with membrane microdomains
(10).
In the present study, we demonstrate, in human primary

CD4 T-lymphocytes, that microdomains and cytoskeleton play
important functional roles in structuring the IL-7R signaling
complex and in regulating its signal transduction kinetics and
intensity along the JAK/STAT pathway. Fig. 7, a–f, gives an
outline of our observations in the form of a time-sequence rep-
resentation of the membrane microdomain formation and
cytoskeleton structuring induced by IL-7. In Fig. 7, g–j, we

FIGURE 7. Schematic of the IL-7-induced cytoskeleton organization and JAK/STAT signal transduction mechanism. a–f sketch the formation of mem-
brane microdomains and microtubules from 1 to 45 min after IL-7 activation of CD4 T-cells. Black circles, plasma and nuclear membranes of a single CD4� T-cell;
top boxes, percentages of cytoplasmic (green) and nuclear (red) pSTAT5; bracketed indications (top), correspondence with figures cited under “Results.”
g, IL-7-free IL-7R���c heterodimers are embedded in the lipid bilayer, outside microdomains in quiescent cells. JAK1 and JAK3 are constitutively bound to
IL-7R� and IL-7R�c, respectively. h, binding of IL-7 brings the transmembrane domains closer together. i, formation of the microdomains that hold the
transmembrane domain straight and pull the cytoplasmic domains closer together. Phosphorylations are indicated by red spheres (j). The FERM proteins,
moesin or ezrin (F), connect the submembrane FERM binding domain of IL-7R� to F-actin. Integrin chains are linked to F-actin through praxillin (P) or talin (T)
complexed to vinculin (V). ABP, actin-binding proteins; S, proteins inhibiting F-actin elongation; R, proteins involved in filament ramification. Microtubules are
anchored to actin microfilament through the putative FERM protein candidate (F) and FERM binding protein (X) capping the microtubule minus-end. STAT5 is
carried in retrograde kinesin cargo along microtubules toward the membrane (minus-end direction). STAT5 binds on IL-7R� Tyr(P)-456 and then is phospho-
rylated by pJAK1�pJAK3. pSTAT5 is carried in the anterograde kinesin cargo as a dimer toward the nucleus (plus-end direction) and translocates through the
nuclear pore (NPC) by means of the importin/Ran-GDP system. Minimum times for each mechanism step are indicated by red arrows.
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interpret, in light of our results, the molecular mechanism of
IL-7R-mediated JAK/STAT signal transduction, from IL-7
binding at the surface of CD4 T-cells to pSTAT5 transport into
their nucleus.
We have previously shown that IL-7R���c complexes assem-

ble spontaneously by means of their ectodomains (11), as also
demonstrated for homologous IL-2R���c complexes (20–22).
IL-7R���c diffuses rapidly in two dimensions at the surface of
quiescent CD4 T-cells (10) (Fig. 7g). Very few membrane
microdomains, labeled with CtxB targeting their GM1, were
observed at the surface of these unactivated cells. Actin is
mostly concentrated beneath the plasmamembrane, and tubu-
lin is very diffuse throughout the cytoplasm, not forming any
highly structured patterns (Figs. 3 (a, d, and f) and 7a). When
IL-7 is added and binds to its receptor, the IL-7R���c ectodo-
mains change shape, pull the long transmembrane domains
closer together, and then bring their endodomains into close
proximity, as proposed by Walsh and colleagues (6, 23) and
summarized in Fig. 7, g–i. This mechanism has also been pro-
posed for the IL-2R���c homologous system (22, 24).We found
that a few min after IL-7 was added, about 300 membrane
microdomains were formed over the entire surface of the T-cell
(Figs. 1b and 6a). These were 90 nm in diameter (i.e. 50% larger
than the practical resolution of our STEDmicroscope).No such
microdomains were observed after rapid treatment with cho-
lesterol oxidase and sphingomyelinase, suggesting the enrich-
ment in cholesterol and sphingomyelin in these structures. The
fact that no suchmicrodomains were present prior to the addi-
tion of IL-7 proves that they were not induced by the pentam-
eric cholera toxin B used to label them. When IL-7 binding
pulled IL-7R� and �c endodomains together, JAK1 and JAK3
were tethered in close contact, and the JAK1�JAK3 complex
recovered its tyrosine kinase activity and phosphorylated JAK1
(Tyr(P)-1034/Tyr(P)-1035) and JAK3 (Tyr(P)-980/Tyr(P)-981)
themselves and IL-7R� carboxyl-terminal Tyr (Tyr(P)-456)
(Fig. 7i). Raft inhibitors delayed and reduced the phosphoryla-
tion of JAK1, JAK3, and STATs without abrogating it com-
pletely. Microdomain thickness and viscosity might regulate
JAK1 and JAK3 phosphorylation through tilt control of the sin-
gle transmembrane helical domain of the two chains, tethering
their cytoplasmic domain and cognate kinase in close contact
(10). Because STATs are phosphorylated by activated JAKs,
inhibition of STAT phosphorylation should be a consequence
of JAK inhibition.
It has been suggested that the IL-7R� cytoplasmic sequence

contains a FERM domain binding motif following the trans-
membrane domain (10). Another shorter FERM binding site
might be questioned in the sequence of the �c cytoplasmic
domain. Given that FERMproteinsmoesin and ezrin have been
immunoprecipitated with activated IL-7-receptor complex
(10), they might anchor rafted IL-7-activated receptor to F-ac-
tin and initiate the microfilament organization that structures
the actin cortex lining the plasmamembrane (25). This anchor-
ing prevents IL-7R diffusion and stabilizes the recruitment of
other receptors, such as integrin (10, 26). Tubulin anchors to
actin microfilaments, potentially through ezrin at its minus-
end (27), and polymerizes to form a microtubule that grows by
its plus-end (28, 29), crosses the cytoplasm, and reaches the

nucleus less than 2 min after the addition of IL-7 (Figs. 3g and
7c). Actin molecules assemble along the nucleus envelope to
formmicrofilaments that form a tight cortex anchoring micro-
tubule plus-ends. We found kinesin heavy chains, but not
dynein, among the proteins coimmunoprecipitated with
STAT5 from IL-7-activated cells. We also found STAT5 and
pSTAT5 coimmunoprecipitated with kinesin heavy chains
from IL-7-activated T-cells. This suggests that these microtu-
bules may drive STAT5 with retrograde kinesin cargo toward
the rafted IL-7R. STAT5 then binds toTyr(P)-456 at the IL-7R�
carboxyl terminus and is phosphorylated on its Tyr-694 by
pJAK1�pJAK3 (Fig. 7j). pSTAT5 dissociates from the receptors,
dimerizes through Tyr(P)-694/Src homology 2 domain inter-
molecular association, and is driven by anterograde kinesins
toward the nuclear pore. A nuclear localization signal has been
found in STAT5 sequences (30); pSTAT5 might be imported
through the nucleopore by the ��-importin system (31).
pSTAT5 dimers contribute, along with other factors, to the
transcription of several genes, such as that coding for IL-2R�.
Unbound pSTAT5 dimers are then dephosphorylated. A
nuclear export signal was also identified in the STAT5
sequences (32). STAT5 might be translocated out of the
nucleus by the exportin system. It is then uploaded by retro-
grade kinesin and driven up to rafted receptors. In our studies,
pSTAT5 translocation into the nucleus was fastest 5 min after
the addition of IL-7 (Figs. 6g and 7d). It accumulated in the
nucleus until the radial microtubules began to depolymerize
10–15 min after the addition of IL-7 and then gradually disap-
peared from the cytoplasm (15–30 min). Tubulin was then
recruited by transversally growing microtubules from the
MTOC 10 min after the addition of IL-7 (Figs. 3 (c and h) and
7e); our observations by pulsed STEDmicroscopy did not show
any colocalization of pSTAT5 with transversal microtubules
from the MTOC system organized in a star pattern around the
nucleus. Cellular pSTAT5, as assayed by cytometry, peaked 15
min after the addition of IL-7, corresponding to the total
amount in the cytoplasm and nucleus.Microscopy showed that
nuclear concentrations peaked 30 min after the addition of
IL-7, whereas cytoplasmic pSTAT5 decreased from 10 min
after the IL-7 addition (Fig. 6g).
Membrane microdomains have also been implicated in the

T-cell receptor signaling cascade, where they are recruited
transiently following receptor engagement to initiate the
assembly of signaling machinery (33). Protein association with
membrane microdomains is likely to be facilitated by raft coa-
lescence following T-cell receptor triggering, a process pro-
moted by cortical actin reorganization and enhanced by the
engagement of costimulatory receptors, such as CD28, clus-
tered at the immunological synapse (34). No such clustering is
observed during the formation of IL-7R signaling complexes
that are dispatched throughout the cell. Induction of cytoskel-
eton structuring has been described with many cytokines and
chemokines but mostly over longer time spans. Pioneering
studies on prolactin receptor (35), growth hormone receptor
(36), and epidermal growth factor receptor (37) have suggested
that machineries carried by the cytoskeleton might be involved
in STAT5 and pSTAT5 distribution and proposed that rapid
organization was involved. Here, in our study, we used super-
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resolution optical microscopy to describe in detail how radial
microtubules are formed within a few min of IL-7 activation,
bridging plasma and nuclear membranes across the narrow
cytoplasmofCD4T-lymphocytes. This is the first time that this
transient organization of radial microtubules, resembling the
spokes of a wheel in an equatorial slice of the T-cell, has been
described (Fig. 7d). We counted about one microtubule per
membrane microdomain embedding IL-7R signaling complex.
These microtubules bud from the actin cortex 1 min after the
addition of IL-7 and then reach the nucleus in less than 1 min.
They have a life span of 5–15 min. Kinesin-assisted transport
along 1-�m-long microtubules has been described in the sec-
ond range, but what role do these radial microtubules play in a
cytoplasm that is so narrow that pSTAT5 should be able to
cross it by passive diffusion in less than 1 s? When we added
cytoskeleton inhibitors, the nuclear translocation of pSTAT5
was very slow, and it accumulated in the cytoplasm. In
untreated IL-7-activated cells, pSTAT5 was found not only
along microtubules, but microtubules might facilitate “fast
track” nuclear import through amicrotubule-importin interac-
tion (38); the nuclear translocation of pSTAT5 might be the
bottleneck in the JAK/STAT signal transduction induced by
IL-7 and may require active molecular motor assistance for
guidance and ushering, not for speed.
Inmore general terms, our functional approach has led to the

discovery of IL-7 signal transduction mechanisms involving
membrane microdomains and transient cytoskeleton structur-
ing that regulate the kinetics and amplification of the JAK/
STAT pathway that is central to CD4 T-cell responses. Mem-
brane microdomains optimize the receptor response, and
microtubules and molecular motors shorten signal transduc-
tion time from membrane to nucleus pore and secure the
nuclear translocation of transcription factors, rapidly priming
the cell response. This is consistentwith the sensing role ofCD4
T-cells that is so central to the immune survey and response.
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J. C., Namane, A., and Thèze, J. (2010) Interleukin-7 compartmentalizes
its receptor signaling complex to initiate CD4 T lymphocyte response.
J. Biol. Chem. 285, 14898–14908

11. Rose, T., Lambotte, O., Pallier, C., Delfraissy, J. F., and Colle, J. H. (2009)
Identification and biochemical characterization of human plasma soluble
IL-7R. Lower concentrations in HIV-1-infected patients. J. Immunol. 182,
7389–7397

12. Leonard, W. J., Imada, K., Nakajima, H., Puel, A., Soldaini, E., and John, S.
(1999) Signaling via the IL-2 and IL-7 receptors from themembrane to the
nucleus. Cold Spring Harb. Symp. Quant. Biol. 64, 417–424

13. Hell, S. W., and Wichmann, J. (1994) Breaking the diffraction resolution
limit by stimulated emission. Stimulated-emission-depletion fluorescence
microscopy. Opt. Lett. 19, 780–782

14. Willig, K. I., Harke, B.,Medda, R., andHell, S.W. (2007) STEDmicroscopy
with continuous wave beams. Nat. Methods 4, 915–918

15. Eggeling, C., Ringemann, C., Medda, R., Schwarzmann, G., Sandhoff, K.,
Polyakova, S., Belov, V. N., Hein, B., vonMiddendorff, C., Schönle, A., and
Hell, S. W. (2009) Direct observation of the nanoscale dynamics of mem-
brane lipids in a living cell. Nature 457, 1159–1162

16. He, H. T., and Marguet, D. (2011) Detecting nanodomains in living cell
membrane by fluorescence correlation microscopy. Annu. Rev. Phys.
Chem. 62, 417–436

17. Lenne, P. F., Wawrezinieck, L., Conchonaud, F., Wurtz, O., Boned, A.,
Guo, X. J., Rigneault, H., He, H. T., and Marguet, D. (2006) Dynamic
molecular confinement in the plasma membrane by microdomains and
the cytoskeleton meshwork. EMBO J. 25, 3245–3256

18. Schliwa, M., and Woehlke, G. (2003) Molecular motors. Nature 422,
759–765

19. Grecco, H. E., Schmick, M., and Bastiaens, P. I. (2011) Signaling from the
living plasma membrane. Cell 144, 897–909

20. Pillet, A., Bugault, F., Thèze, J., Chakrabarti, L., and Rose, T. (2009) A
programmed switch from IL-15- to IL-2-dependent activation in human
NK cells. J. Immunol. 182, 6267–6277

21. Pillet, A. H., Juffroy, O., Mazard-Pasquier, V., Moreau, J. L., Gesbert, F.,
Chastagner, P., Colle, J. H., Thèze, J., and Rose, T. (2008) Human IL-R�

chains form IL-2 binding homodimers. Eur. Cytokine Netw. 19, 49–59
22. Pillet, A. H., Lavergne, V., Gesbert, F., Mazard-Pasquier, V., Thèze, J., and
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